9 resultados para Cardiovascular System

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Role of reactive oxygen species (ROS)/nitric oxide (NO) balance and renin-angiotensin system in mediating cardiac hypertrophy in hyperthyroidism was evaluated in an in vivo and in vitro experimental model. Male Wistar rats were divided into four groups: control, thyroid hormone, vitamin E (or Trolox, its hydrosoluble analogue), thyroid hormone + vitamin E. Angiotensin II receptor (AT1/AT2) gene expression, immunocontent of AT1/AT2 receptors, angiotensinogen, NADPH oxidase (Nox2), and nitric oxide synthase isoforms, as well as ROS concentration (hydrogen peroxide and superoxide anion) were quantified in myocardium. Thyroid hormone increased ROS and NO metabolites, iNOS, nNOS and eNOS isoforms and it was accompanied by cardiac hypertrophy. AT1/AT2 expression and the immunocontent of angiotensinogen and Nox2 were enhanced by thyroid hormone. Antioxidants reduced ROS levels, Nox2, AT1/AT2, NOS isoforms and cardiac hypertrophy. In conclusion, ROS/NO balance may play a role in the control of thyroid hormone-induced cardiac hypertrophy mediated by renin-angiotensin system. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Epidemiological studies suggest that glucocorticoid excess in the fetus may contribute to the pathophysiology of cardiovascular diseases in adulthood. However, the impact of maternal glucocorticoid on the cardiovascular system of the offspring has not been much explored in studies involving humans, especially in childhood. The objective of this study was to assess the influence of maternal cortisol concentrations on child arterial elasticity. One hundred and thirty pregnant women followed from 1997 to 2000, and respective children 5-7 years of age followed from 2004 to 2006 were included in the study. Maternal cortisol was determined in saliva by an enzyme immunoassay utilizing the mean concentration of nine samples of saliva. Arterial elasticity was assessed by the large artery elasticity index (LAEI; the capacitive elasticity of large arteries) by recording radial artery pulse wave, utilizing the equipment HDI/PulseWave CR-2000 Cardiovascular Profiling System (R). The nutritional status of the children was determined by the body mass index (BMI). Insulin concentration was assessed by chemiluminescence, and insulin resistance by the homeostasis model assessment. Blood glucose, total cholesterol and fractions (LDL-c and HDL-c) and triglyceride concentrations were determined by automated enzymatic methods. The association between maternal cortisol and child arterial elasticity was assessed by multivariate linear regression analysis. There was a statistically significant association between maternal cortisol and LAEI (P=0.02), controlling for birth weight, age, BMI and HDL-c of the children. This study suggests that exposure to higher glucocorticoid concentrations in the prenatal period is associated to lower arterial elasticity in childhood, an earlier cardiovascular risk marker.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although most of effects of Angiotensin II (Ang II) related to cardiac remodelling can be attributed to type 1 Ang II receptor (AT(1)R), the type 2 receptor (AT(2)R) has been shown to be involved in the development of some cardiac hypertrophy models. In the present study, we investigated whether the thyroid hormone (TH) action leading to cardiac hypertrophy is also mediated by increased Ang II levels or by change on AT(1)R and AT(2)R expression, which could contribute to this effect. In addition, we also evaluated the possible contribution of AT(2)R in the activation of Akt and in the development of TH-induced cardiac hypertrophy. To address these questions, Wistar rats were treated with thyroxine (T(4), 0.1 mg/kg BW/day, i.p.), with or without AT(2)R blocker (PD123319), for 14 days. Cardiac hypertrophy was identified based on heart/body weight ratio and confirmed by analysis of atrial natriuretic factor mRNA expression. Cardiomyocyte cultures were used to exclude the influence of TH-related hemodynamic effects. Our results demonstrate that the cardiac Ang II levels were significantly increased (80%, P < 0.001) as well as the AT(2)R expression (50%, P < 0.05) in TH-induced cardiac hypertrophy. The critical involvement of AT(2)R to the development of this cardiac hypertrophy in vivo was evidenced after administration of AT(2) blocker, which was able to prevent in 40% (P < 0.01) the cardiac mass gain and the Akt activation induced by TH. The role of AT(2)R to the TH-induced cardiomyocyte hypertrophy was also confirmed after using PD123319 in the in vitro studies. These findings improve understanding of the cardiac hypertrophy observed in hyperthyroidism and provide new insights into the generation of future therapeutic strategies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aging leads to changes in cardiac structure and function. Evidence suggests that the practice of regular exercise may prevent disturbances in the cardiovascular system during aging. We studied the effects of aging on the morphology and morphometry of cardiac neurons in Wistar rats and investigated whether a lifelong moderate exercise program could exert a protective effect toward some deleterious effects of aging. Aging caused a significant decline (28%) in the number of NADH-diaphorase-stained cardiac Animals submitted to a daily session of 60 min, 5 day/week, at 1.1 km/h of running in treadmill over the entire life span exhibited a reversion of the observed decline in the number of cardiac neurons. However, most interesting was that the introduction of this lifelong exercise protocol dramatically altered the sizes of cardiac neurons. There was a notable increase in the percentage of small neurons in the rats of the exercise group compared to the sedentary animals. This is the first time that a protective effect of lifelong regular aerobic exercise has been demonstrated on the deleterious effects of aging in cardiac neurons. (C) 2009 Elsevier GmbH. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Our laboratory demonstrated that training program attenuated the inflammatory responses in lung ischemia/reperfusion (IR). Considering the importance of the inflammatory responses on the cardiovascular system, we evaluate the effect of physical training on the vascular responsiveness and its underlying mechanism after lung IR. Male Wistar rats were submitted to run training and lung IR. Concentration-response curves for relaxing and contracting agents were obtained. Protein expressions of SOD-1 and p47(phox), plasma nitritre/nitrate (NO (x) (-) ) and interleukin 6 (IL-6) were evaluated. A decreased in the potency for acetylcholine and phenylephrine associated with an upregulation of the p47(phox) expression were found after Lung IR as well as an increase in IL-6 and NO (x) (-) levels. Run training attenuated the vascular dysfunction that was accompanied by reduction of the p47(phox) protein expression and IL-6 levels. Our findings show the beneficial effect of training on the vascular function that was associated with reduction in inflammatory response in lung IR.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aims Glycosylation with beta-N-acetylglucosamine (O-GlcNAcylation) is one of the most complex post-translational modifications. The cycling of O-GlcNAc is controlled by two enzymes: UDP-NAc transferase (OGT) and O-GlcNAcase (OGA). We recently reported that endothelin-1 (ET-1) augments vascular levels of O-GlcNAcylated proteins. Here we tested the hypothesis that O-GlcNAcylation contributes to the vascular effects of ET-1 via activation of the RhoA/Rho-kinase pathway. Methods and results Incubation of vascular smooth muscle cells (VSMCs) with ET-1 (0.1 mu M) produces a time-dependent increase in O-GlcNAc levels. ET-1-induced O-GlcNAcylation is not observed when VSMCs are previously transfected with OGT siRNA, treated with ST045849 (OGT inhibitor) or atrasentan (ET(A) antagonist). ET-1 as well as PugNAc (OGA inhibitor) augmented contractions to phenylephrine in endothelium-denuded rat aortas, an effect that was abolished by the Rho kinase inhibitor Y-27632. Incubation of VSMCs with ET-1 increased expression of the phosphorylated forms of myosin phosphatase target subunit 1 (MYPT-1), protein kinase C-potentiated protein phosphatase 1 inhibitor protein (protein kinase C-potentiated phosphatase inhibitor-17), and myosin light chain (MLC) and RhoA expression and activity, and this effect was abolished by both OGT siRNA transfection or OGT inhibition and atrasentan. ET-1 also augmented expression of PDZ-Rho GEF (guanine nucleotide exchange factor) and p115-Rho GEF in VSMCs and this was prevented by OGT siRNA, ST045849, and atrasentan. Conclusion We suggest that ET-1 augments O-GlcNAcylation and this modification contributes to increased vascular contractile responses via activation of the RhoA/Rho-kinase pathway.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The biological activity of the proline rich decapeptde Bj PRO 10c a processing product of the C type natriuretic peptide precursor protein, expressed in the brain and the venom gland of the pit viper Bothrops jararaca, was originally attributed to the inhibition of the somatic angiotensm converting enzyme activity with subsequent ant hypertensive effect However recent results suggest broader biological activity may also be involved in the cardiovascular effects of this peptide Here we show that Bj PRO 10c enhances and sustains the generation of nitric made (NO) by regulating argininosuccinate synthase activity and thereby velocity of the citrulline NO cycle Bj PRO 10c-mediated effects not restricted to the cardiovascular system since NO production was also induced in cells of astroglial origin Bj PRO 10c was internalized by C6 astroglioma cells where it induces NO production and upregulation of the citrulline NO cycle cells in a dose dependent fashion In view of that, astroglial cells function as L arginine pool for NO production in neighboring neurons, we suggest a regulatory function for Bj PRO-10c on the metabolism of this gaseous neurotransmitter in the CNS Moreover, proliferation of astroglial cells was reduced in the presence of Bj PRO 10c however, cell death was not induced Since NO donors have been studied for the treatment of solid cancers Bj PRO 10c may serve as structural model for developing drugs to improve the effects of cancer therapy based on the peptide`s ability to augment NO production (C) 2010 Elsevier B V All rights reserved

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O-GlcNAcylation augments vascular contractile responses, and O-GlcNAc-proteins are increased in the vasculature of deoxycorticosterone-acetate salt rats. Because endothelin 1 (ET-1) plays a major role in vascular dysfunction associated with salt-sensitive forms of hypertension, we hypothesized that ET-1-induced changes in vascular contractile responses are mediated by O-GlcNAc modification of proteins. Incubation of rat aortas with ET-1 (0.1 mu mol/L) produced a time-dependent increase in O-GlcNAc levels and decreased expression of O-GlcNAc transferase and beta-N-acetylglucosaminidase, key enzymes in the O-GlcNAcylation process. Overnight treatment of aortas with ET-1 increased phenylephrine vasoconstriction (maximal effect [in moles]: 19 +/- 5 versus 11 +/- 2 vehicle). ET-1 effects were not observed when vessels were previously instilled with anti-O-GlcNAc transferase antibody or after incubation with an O-GlcNAc transferase inhibitor (3-[2-adamantanylethyl]-2-[{4-chlorophenyl}azamethylene]-4-oxo-1,3-thiazaperhyd roine-6-carboxylic acid; 100 mu mol/L). Aortas from deoxycorticosterone-acetate salt rats, which exhibit increased prepro-ET-1, displayed increased contractions to phenylephrine and augmented levels of O-GlcNAc proteins. Treatment of deoxycorticosterone-acetate salt rats with an endothelin A antagonist abrogated augmented vascular levels of O-GlcNAc and prevented increased phenylephrine vasoconstriction. Aortas from rats chronically infused with low doses of ET-1 (2 pmol/kg per minute) exhibited increased O-GlcNAc proteins and enhanced phenylephrine responses (maximal effect [in moles]: 18 +/- 2 versus 10 +/- 3 control). These changes are similar to those induced by O-(2-acetamido-2-deoxy-D-glucopyranosylidene) amino-N-phenylcarbamate, an inhibitor of beta-N-acetylglucosaminidase. Systolic blood pressure (in millimeters of mercury) was similar between control and ET-1-infused rats (117 +/- 3 versus 123 +/- 4 mm Hg; respectively). We conclude that ET-1 indeed augments O-GlcNAc levels and that this modification contributes to the vascular changes induced by this peptide. Increased vascular O-GlcNAcylation by ET-1 may represent a mechanism for hypertension-associated vascular dysfunction or other pathological conditions associated with increased levels of ET-1. (Hypertension. 2010; 55: 180-188.)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Increasing efforts exist in integrating different levels of detail in models of the cardiovascular system. For instance, one-dimensional representations are employed to model the systemic circulation. In this context, effective and black-box-type decomposition strategies for one-dimensional networks are needed, so as to: (i) employ domain decomposition strategies for large systemic models (1D-1D coupling) and (ii) provide the conceptual basis for dimensionally-heterogeneous representations (1D-3D coupling, among various possibilities). The strategy proposed in this article works for both of these two scenarios, though the several applications shown to illustrate its performance focus on the 1D-1D coupling case. A one-dimensional network is decomposed in such a way that each coupling point connects two (and not more) of the sub-networks. At each of the M connection points two unknowns are defined: the flow rate and pressure. These 2M unknowns are determined by 2M equations, since each sub-network provides one (non-linear) equation per coupling point. It is shown how to build the 2M x 2M non-linear system with arbitrary and independent choice of boundary conditions for each of the sub-networks. The idea is then to solve this non-linear system until convergence, which guarantees strong coupling of the complete network. In other words, if the non-linear solver converges at each time step, the solution coincides with what would be obtained by monolithically modeling the whole network. The decomposition thus imposes no stability restriction on the choice of the time step size. Effective iterative strategies for the non-linear system that preserve the black-box character of the decomposition are then explored. Several variants of matrix-free Broyden`s and Newton-GMRES algorithms are assessed as numerical solvers by comparing their performance on sub-critical wave propagation problems which range from academic test cases to realistic cardiovascular applications. A specific variant of Broyden`s algorithm is identified and recommended on the basis of its computer cost and reliability. (C) 2010 Elsevier B.V. All rights reserved.